₫

more products please visit us on fiberoptical-cables.com

# ADSS Fiber Optic Cable 80m 100m 120m 200m Span ADSS Optical Single **Jacket ADSS Aramid Yarn Optic Fibre Cable**

#### Basic Information

• Place of Origin: GUANGZHOU/CHINA Brand Name: PUNAISGD/CABLEPULS Certification: ISO/CE/ROSH Model Number: ADSS fiber optic cable

 Minimum Order Quantity: 2km • Price: negotiate

Packaging Details: Wooden Spool Φ1200\*750mm

• Delivery Time: 5-25days

30%TT as deposit,70%Balance before • Payment Terms:

shipping.

 Supply Ability: 100km



#### Product Specification

ADSS Fiber Optic Cable Type • Fiber Type: Single Mode/multimode • Fiber Count: 6/12/24/36/48/72/96/144

• Oute Sheath: Black PE Installation Method: Aerial

• Strength Member Material: FRP/ARMID YARN Production Capacity: 200km Per Day • HS Code: 854470000

• Highlight: 120m ADSS Fiber Optic Cable 100m ADSS Fiber Optic Cable 200m ADSS Fiber Optic Cable



### More Images



#### **Product Description**

ADSS Fiber Optic Cable 80m 100m 120m 200m Span Fiber Cable ADSS Optical Single Jacket ADSS Aramid Yarn Fiber Optic Cable Optic Fibre Cable ADSS

The ADSS optical cable, a sophisticated type of fiber optic cable, adopts a loose sheathed twisted structure. This advanced design features fibers enclosed in a loose tube made from high modulus polyester material. To enhance durability, a waterproof compound fills the loose tube, protecting the fibers from moisture. Additionally, the loose tube and a filler rope twist around a non-metallic central reinforcement core made of fiber-reinforced plastic (FRP), forming a compact and robust cable core. Furthermore, water-blocking grease fills the gaps in the cable core, effectively preventing water ingress. Outer Structure

The outer core of the ADSS cable is covered with an extruded polyethylene (PE) inner sheath. Following this, the cable undergoes a two-way twisting process with two layers of aramid yarn, which significantly enhances its overall strength. To provide additional protection, the outer end of the cable is covered with either a polyethylene (PE) jacket or an electric corrosion-resistant (AT) jacket. This dual-layer protection ensures the cable's longevity and resilience against various environmental conditions


#### Installation Advantages

Infrastructure Efficiency: The ADSS fiber optic cable can be installed on the same pole towers as power lines, eliminating the need for additional structures. Consequently, this integration simplifies the installation process and optimizes the use of existing infrastructure.

Uninterrupted Construction: Installation and construction of the ADSS cable can proceed without causing power outages. As a result, the failure of power lines will not impact the normal transmission of optical cables, ensuring continuous and reliable

#### **ADSS Cable Place Order Information**

| Fiber<br>count | Structure | Fibers<br>per<br>tube | Loose            | CSM                | Nominal              | I Height | Cable<br>weight<br>(kg/km) |
|----------------|-----------|-----------------------|------------------|--------------------|----------------------|----------|----------------------------|
|                |           |                       | tube             | diameter/pa        | Thickness of         |          |                            |
|                |           |                       | diameter<br>(mm) | d diameter<br>(mm) | outer jacket<br>(mm) |          |                            |
| 4              | 1+6       | 4                     | 1.9±0.1          | . ,                | 1.6                  | 9.5±0.2  | 80                         |
| 6              | 1+6       | 6                     | 2.0±0.1          | 2.0/2.0            | 1.6                  | 9.8±0.3  | 80                         |
| 8              | 1+6       | 4                     | 1.9±0.1          | 2.0/2.0            | 1.6                  | 9.8±0.3  | 80                         |
| 12             | 1+6       | 6                     | 2.1±0.1          | 2.0/2.0            | 1.6                  | 9.8±0.3  | 80                         |
| 24             | 1+6       | 12                    | 2.1±0.1          | 2.0/2.0            | 1.6                  | 9.8±0.3  | 80                         |
| 36             | 1+6       | 12                    | 2.2±0.1          | 2.0/2.0            | 1.6                  | 10.0±0.3 | 85                         |
| 48             | 1+6       | 12                    | 2.2±0.1          | 2.0/2.0            | 1.6                  | 10.0±0.3 | 85                         |
| 72             | 1+6       | 12                    | 2.2±0.1          | 2.0/2.0            | 1.6                  | 10.0±0.3 | 85                         |
| 96             | 1+8       | 12                    | 2.2±0.1          | 2.0/3.4            | 1.7                  | 11.8±0.3 | 123                        |
| 144            | 1+12      | 12                    | 2.2±0.1          | 3.0/6.2            | 1.7                  | 14.5±0.3 | 175                        |



| Fiber P | arameters                      |                    |                             |             |
|---------|--------------------------------|--------------------|-----------------------------|-------------|
| No.     | Items                          | Unit               | Specificati<br>on<br>G.652D |             |
|         |                                | μm                 | 9.2±0.4                     |             |
| 1       | Mode Field Diameter            | 1550nm             | μm                          | 10.4±0.8    |
| 2       | Cladding Diameter              |                    | μm                          | 125.0±1.0   |
| 3       | Cladding Non-Circularity       |                    | %                           | ≤1.0        |
| 4       | Core-Cladding Concentricity E  | rror               | μm                          | ≤0.5        |
| 5       | Coating Diameter               |                    | μm                          | 245±5       |
| 6       | Coating Non-Circularity        |                    | %                           | ≤6.0        |
| 7       | Cladding-Coating Concentricity | y Error            | μm                          | ≤12.0       |
| 8       | Cable Cutoff Wavelength        |                    | nm                          | λcc≤1260    |
| 9       |                                | 1310nm             | dB/km                       | ≤0.35       |
|         |                                | 1550nm             | dB/km                       | ≤0.21       |
|         | Attenuation(max.)              | 1380nm             | dB/km                       | ≤0.35       |
|         | / ttoridation(max.)            | 1625nm             | dB/km                       | ≤0.24       |
|         |                                | 1310nm 1285-1330nm | dB/km                       | ≤0.04       |
| 10      | Attenuation and                | 1550nm 1525-1575nm | dB/km                       | ≤0.03       |
|         | wavelength                     | 1550nm 1480-1580nm | dB/km                       | ≤0.05       |
| 11      |                                | 1288-1339nm        | ps/(nm.km)                  | ≥-3.5, ≤3.5 |
|         |                                | 1271-1360nm        | ps/(nm.km)                  | ≥-5.3, ≤5.3 |
|         | Dispersion                     | 1480-1580nm        | ps/(nm.km)                  | ≤20         |
|         | Dispersion                     | 1550nm             | ps/(nm.km)                  | ≤18         |
| 12      | Zero dispersion wavelength     |                    | Nm                          | 1300-1324   |
| 13      | Zero dispersion slope          | ps/(nm2•km)        | ≤0.092                      |             |
| 14      | Typical value                  | ps/(nm2•km)        | 0.04                        |             |
| 15      | Largest individual fiber       | Ps/√ km            | 0.2                         |             |
| 16      | Link design values             | Ps/√ km            | 0.1                         |             |
| 17      | Two way average                | 1310nm-1550        | ≤0.01dB                     |             |
|         |                                |                    |                             |             |

Benefits of ADSS Cable

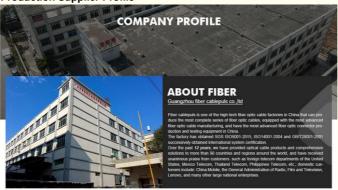
ADSS cables rely solely on their dielectric properties, eliminating the need for metal support structures and reducing

installation costs.

Designed to withstand high electric fields, ADSS cables perform reliably near high-voltage power lines without interference from electromagnetic fields.

With superior weather resistance and tensile strength, ADSS cables excel in harsh environments like coastal areas and high altitudes, ensuring long-term performance.






## Optical Fiber Hardware for ADSS cables





# **Production Supplier Profile**





+8613687956390 cotton@fibercabl



## **OUR PRODUCTION CAPACITY AND QUALITY CONTROL SYSTEM**





- How do I place an OEM or customized order?

  1) Send your purchase intention to our email: cotton@fibercablepuls.com

  2) Our sales team will contact you to confirm the product specification, packaging, printing, quantity, and other specific information.

  3) Sign the contract or Proforma Invoice.

  4) After receiving your deposit, we will start to arrange the production.

  5) 2 weeks before the completion of production, we will notify you to start contacting shipping.

925-926, Building B1, No. 2 Chuanghui Avenue, Yonghe Yushan InternationalGuangzhou city,Guangdong province,China